Strong Szegő asymptotics and zeros of the zeta function

نویسندگان

  • Paul Bourgade
  • Jeffrey Kuan
چکیده

Assuming the Riemann hypothesis, we prove the weak convergence of linear statistics of the zeros of L-functions to a Gaussian field, with covariance structure corresponding to the Hnorm of the test functions. For this purpose, we obtain an approximate form of the explicit formula, relying on Selberg’s smoothed expression for ζ′/ζ and the Helffer-Sjöstrand functional calculus. Our main result is an analogue of the strong Szegő theorem, known for Toeplitz operators and random matrix theory. AMS Subject Classification (2010): 11M06, 11M50, 15B52.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Numerical Study of the Derivative of the Riemann Zeta Function at Zeros

The derivative of the Riemann zeta function was computed numerically on several large sets of zeros at large heights. Comparisons to known and conjectured asymptotics are presented.

متن کامل

THE DISTRIBUTION OF ZEROS OF EPSTEIN ZETA FUNCTIONS OVER GLn

We study the distribution of the nontrivial zeros of ideal class zeta functions associated to elements in the symmetric space of GLn over a number field. We establish asymptotics for the number of nontrivial zeros up to height T , and asymptotics for the distribution of the nontrivial zeros with respect to the critical line. We combine these results to study the mean value of the real parts of ...

متن کامل

On the distribution of zeros of the Hurwitz zeta-function

Assuming the Riemann hypothesis, we prove asymptotics for the sum of values of the Hurwitz zeta-function ζ(s, α) taken at the nontrivial zeros of the Riemann zeta-function ζ(s) = ζ(s, 1) when the parameter α either tends to 1/2 and 1, respectively, or is fixed; the case α = 1/2 is of special interest since ζ(s, 1/2) = (2s − 1)ζ(s). If α is fixed, we improve an older result of Fujii. Besides, we...

متن کامل

Relative Szegő asymptotics for Toeplitz determinants

In this paper we study the asymptotic behavior, as n → ∞, of ratios Dn(e hdμ)/Dn(dμ) of Toeplitz determinants defined by a measure μ and a sufficiently smooth function h. The approach we follow is based on the Verblunsky coefficients associated to μ. We prove that that the second order asymptotics depends on only few Verblunsky coefficients. In particular, we establish a relative version of the...

متن کامل

Riemann ’ s and ζ ( s )

[This document is http://www.math.umn.edu/ ̃garrett/m/complex/notes 2014-15/09c Riemann and zeta.pdf] 1. Riemann’s explicit formula 2. Analytic continuation and functional equation of ζ(s) 3. Appendix: Perron identity [Riemann 1859] exhibited a precise relationship between primes and zeros of ζ(s). A similar idea applies to any zeta or L-function with analytic continuation, functional equation, ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012